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The parametric decay of a single linearly unstable Langmuir wave into broad spectra of damped
daughter Langmuir and ion-acoustic waves is studied by means of the Zakharov partial differential
equations in one dimension. In the regime investigated, the multimode daughter wave spectra
are found to exhibit locked-in-time behavior, allowing a reduction to an equivalent three-mode
system. The dynamics of the reduced system are found to be in quantitative agreement with those
of the multimode Zakharov simulations. Qualitative agreement is maintained when the ion-acoustic
response is reduced from second order to first order. The nonlinear dynamics of the resulting
(complex) third-order system are studied analytically and numerically with emphasis on cases when
the daughter modes are unequally damped. The special case of exact linear frequency matching
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between the pump and daughter modes is also considered.

PACS number(s): 03.40.Gc, 52.35.Mw, 02.60.Cb, 52.35.Ra

I. INTRODUCTION

In continuous media, such as plasmas and fluids, the
fundamental dynamics of nonlinear disturbances are usu-
ally described by systems of partial differential equations
(PDE’s). Galerkin expansions and truncations to a few
normal modes are commonly used to reduce the number
of degrees of freedom of the systems to a very low order.
A great deal of attention has been paid to the nonlinear
dynamics of three- and four-mode systems [1-3], but the
relevance to “real” physical systems (as represented by
PDE’s) has not always been clear.

The purpose of this paper is threefold.

(1) To numerically study the one-dimensional (1D)
driven Zakharov PDE system, which is capable of rep-
resenting a turbulent state consisting of many coupled
waves, in a regime where an unstable monochromatic
“pump” wave is parametrically coupled to two daughter
multimode wave spectra.

(2) To reduce this PDE system to an equivalent dy-
namical system of three coupled waves that exhibit the
same nonlinear dynamics as the larger (PDE) system in
the regimes studied.

(3) To further study the nonlinear dynamics of this
generalized three-wave system.

We begin with a discussion of the two-time-scale
Zakharov [4] PDE model of the nonlinear interactions
of electron plasma (Langmuir) waves and ion-acoustic
waves. Similar equations have been employed exten-
sively to analyze turbulence in various other systems
[3,5]. In particular, we study a system where an unsta-
ble “pump” Langmuir wave drives two daughter waves:
one Langmuir and one ion-acoustic. Parameters for our
one-dimensional studies are motivated by a recent 2D
Zakharov-equation analysis [6—8] of electron-beam-driven
Langmuir turbulence detected by sounding rockets in
the Earth’s magnetized auroral ionosphere. In order to
simplify the problem and make contact with three-wave
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models, the system is assumed to be driven by a sin-
gle unstable pump Langmuir wave, with resonant phase
velocity and temporal growth rates due to the putative
auroral electron beam. All other Langmuir-wave modes
are damped in k space with a power-law damping rate
inferred from measured (approximately isotropic) power-
law tails on the electron distributions.

Numerical solutions to the driven Zakharov equations
are found in a parameter regime where the dominant
nonlinear behavior is the single backscatter of the beam-
unstable mode off ion-acoustic waves. This regime, in
which there is heavy daughter Langmuir-wave damp-
ing and/or a weakly unstable pump, differs from the
multiple-backscatter or “cascade” regime characterized
by stronger pumps and weaker damping. In the case
we study, backscatter decay typically removes Langmuir-
wave energy from modes resonant with the beam elec-
trons and can therefore saturate the instability. How-
ever, in the fully nonlinear states discussed here, energy
will sometimes flow from the daughter modes back to the
beam-resonant mode. These wave-wave processes are as-
sumed to dominate resonant-wave backreaction on the
beam (i.e., quasilinear effects). Although the pump con-
sists of a single k-space mode, the daughter waves (both
Langmuir and ion-acoustic) are composed of a large num-
ber of modes, which contribute to fairly narrow spec-
tral packets centered near the nominal wave numbers
for three-wave backscatter decay. The frequency spec-
trum of the daughter Langmuir waves is, nevertheless,
dominated by a single frequency that has a linear corre-
spondence to a single (mean) wave number of the packet
along with sideband frequencies representative of nonlin-
ear processes. The time history of the total wave energy
exhibits either limit-cycle behavior or chaotic behavior,
depending on the ratio of the growth rate of the beam-
resonant mode to the damping rate of a typical backscat-
tered Langmuir wave.

An examination of the wave number spectra during the
nonlinear evolution of the system reveals strong phase
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correlations between the daughter Langmuir and ion-
acoustic waves. These observed correlations are the basis
for a reduction of the PDE system to a simpler three-
mode system in which the daughter Langmuir and ion-
acoustic spectral packets are each treated as a single
equivalent lumped mode. The mismatch A between the
pump-wave frequency and the sum of the mean linear
frequencies of the two daughter modes is determined by
the details of the Zakharov simulations, but is left as a
free parameter in the reduced three-wave system.

Following a further simplification, in which the ion-
acoustic response is reduced from second to first order,
the three-wave system described here can be regarded
as a generalization of a system studied by Wersinger,
Finn, and Ott [9] (hereafter, WFO). WFO considered
the interaction between a linearly unstable wave and two
identically damped lower-frequency daughter waves. By
varying the single damping rate, they observed an evo-
lution in the system’s dynamics from periodic limit cy-
cles through bifurcations into chaos. Their assumption
of identical damping for the daughter waves reduced the
dynamical system to three real degrees of freedom. A
by-product of this assumption was that in the limit of
zero linear frequency mismatch between the pump and
daughter waves (A = 0) the dynamics became unstable
and solutions became unbounded.

Our analysis extends the work of WFO by permitting
the damping rates of the two daughter waves to differ
from one another. Since in our case one of the daughter
waves will be a Langmuir wave and the other an ion-
acoustic wave, a restriction to equal damping rates can-
not be justified on physical grounds. Allowing different
damping rates increases the dimension of the dynamical
system from three to four (real) degrees of freedom. The
nonlinear behavior exhibited by the four-dimensional sys-
tem generally differs from that of the three-dimensional
one studied by WFO. One consequence of our general-
ization is that the condition A = 0 no longer leads to
unstable dynamics. This special limit of zero frequency
mismatch, which we consider here, also leads to a re-
duction of the system to three dimensions; however, this
reduced system is different from the one studied by WFO.

The structure of the remainder of this paper is as fol-
lows: In Sec. II we discuss the Zakharov PDE model
of the nonlinear coupling of Langmuir and ion-acoustic
waves. We also describe the driving and dissipation
parameters used in our numerical solutions of the Za-
kharov equations—as discussed above these parameters
are based on recent [6-8] two-dimensional auroral mag-
netized plasma studies. A brief discussion of the nu-
merical codes is also provided. Specific numerical solu-
tions of the Zakharov equations are presented in Sec. III,
along with an analysis of the nonlinear wave number
spectra. In Sec. IV we derive a reduced three-coupled-
wave system directly from the Zakharov equations un-
der constraints determined from the numerical solutions.
Section V contains a comparison of Zakharov-equation
dynamics with the dynamics of the reduced three-wave
system with lumped-mode parameters determined from
the Zakharov spectra. The reduced three-wave system
is next examined analytically in Sec. VI in order to de-

lineate features of the general four-dimensional dynamics
such as fixed point stability and four-space volume con-
traction. A numerical study of the system dynamics over
a wide range of parameters is presented in Sec. VII in
both the general four-dimensional regime as well as in
the special three-dimensional limit associated with zero
frequency mismatch. Finally, Sec. VIII contains conclud-
ing remarks.

II. PARTIAL DIFFERENTIAL EQUATION
MODEL

A. Zakharov-equation description
of wave interactions

The electrostatic Zakharov equations [4] describe the
nonlinear coupling between Langmuir waves and ion-
acoustic waves (not including the effects of wave-particle
nonlinearities). The dimensionless Zakharov equations in
a multidimensional unmagnetized plasma can be written
as

V - (i0; + 4 + VA)E(x,t) = V - (6nE), (1a)
(82 + 2%:00y — V?)on(x,t) = V2|E|2. (1b)

The Langmuir electric field envelope E is related to the
high-frequency electric field £ through the relation £& =
Re(Ee~%t). The low-frequency quasineutral density
perturbation is én and the Langmuir and ion-acoustic
damping operators (whose Fourier transforms are the k-
space damping rates) are 4 and 4,4, respectively.

The units used in Egs. (1a) and (1b) are such that the
following replacements yield physical units:
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are the electron plasma frequency and electron Debye
length, respectively. The parameters m., m;, and T, are
the electron and ion mass and the electron temperature,
and ng is the mean electron number density.

The first Zakharov equation describes the evolution of
the slowly varying envelope of a Langmuir-wave electric
field. The linear evolution of the envelope is described
by the left side of Eq. (1a) and the nonlinear effects of
the density perturbations (which cause Langmuir waves
to refract into low-density regions) are contained on the
right side. Equation (1b) describes the linear evolution
of ion-acoustic waves (left) driven by the nonlinear pon-
deromotive force of Langmuir waves (right).

As written, the Zakharov equations are valid in a mul-
tiple dimensional system where E = —V ¢ for a scalar
potential ¢. Henceforth, we consider only a 1D system.
Thus, the electrostatic field itself will be a scalar F and
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the divergence operating on both the left and right sides
of (1) become superfluous.

Upon taking the Fourier transforms of the 1D reduc-
tions of (1la) and (1b), the Zakharov equations can be
written in their k-space representation,

[68: + iy (k) — K1 Eu(t) = 3 6ng(t) Eueq(), (2a)

[02 + 27ia (k)By + k3]0 (t)

= kY Eq(t)[E*(t)lk—q> (2b)

where we use subscripts instead of functional notation for
the wave number dependence of the fields to distinguish
them from the corresponding real-space quantities. The
summations on the right sides of (2a) and (2b) are the
discrete convolutions corresponding to the products of
fields on the right sides of (1a) and (1b). Here v(k) and
via (k) are the Langmuir and ion-acoustic damping rates,
which are related to the damping operators 4 and ¥;, in
(1a) and (1b) through a Fourier transform.

B. Application to beamgdriven Langmuir turbulence
in the auroral zone

The Zakharov equations have been the basis of a num-
ber of numerical studies of Langmuir turbulence driven
by electron beams [10-12]. A sufficiently intense electron
beam with velocity v, will linearly destabilize Langmuir
waves with a phase velocity slightly below v, (i.e., waves
resonant with the positive slope on the distribution func-
tion). Thus, Langmuir waves with k = kp 2 we/vp will
be unstable with growth rate vy(ky) < O (i.e., negative
damping).

Under conditions where wave-particle nonlinearities,
which can modify the electron distribution, are suffi-
ciently slow, the Langmuir waves at k; will grow until
they exceed the threshold for the backscatter decay in-
stability. Backscatter decay is a resonant three-wave in-
teraction that transfers energy from unstable Langmuir
waves at kp into backward propagating Langmuir waves
at ks = —kp+k, and ion-acoustic waves at k;, = 2kp—k..
Here, k.Ae = (2¢5/3ve), where ¢, = (me/mi)l/zve is the
ion-sound speed and v. is the electron thermal veloc-
ity. Thus, backscatter decay is a nonlinear wave-wave
interaction that can saturate the linear beam-driven in-
stability. We use the subscript S for the daughter Lang-
muir wave to indicate that it is a (frequency-downshifted)
Stokes wave. The (frequency-upshifted) anti Stokes wave
at wave number k4 = kp + k;, is far off resonance and
plays an insignificant role in the wave-coupling dynamics.

If the plasma is weakly damped at wave numbers be-
low k; (for example, beam-driven turbulence in the solar
wind [12]), the backscattered daughter Langmuir wave
can in turn grow to the point where it exceeds the thresh-
old for a second backscatter decay. Multiple backscatter

decays are referred to as backscatter cascade, which can
take Langmuir energy to small wave numbers where it
can then couple efficiently to localized wave packets that
self-focus and collapse—a coherent-phase regime known
as strong Langmuir turbulence [13,14].

If the rate of damping of backscattered Langmuir
waves is sufficient, the backscatter cascade will cease af-
ter at most one or two steps. This situation was in-
vestigated [15] for the case where the beam-unstable
region of k space contained a large number of phase-
incoherent modes. It was found that the energy in the
beam-resonant modes and the daughter Langmuir and
ion-acoustic modes underwent oscillations that could be
described by a Lotka-Voltera system, which is appropri-
ate for three phase-incoherent coupled waves (i.e., weak
Langmuir turbulence).

In the present study, we consider the contrasting case
where only a single beam-resonant mode is excited [16].
The values of simulation parameters used in the numer-
ical study of Sec. III are chosen to model typical condi-
tions in the Earth’s auroral ionosphere at the time of in-
tense Langmuir-wave bursts observed by sounding rock-
ets [17,18]. The electron distribution is characterized by
an approximately isotropic tail of nonthermal electrons
that can be modeled by a power law in velocity [19]. In
addition, there are (downward-going) beamlike electrons,
aligned with the Earth’s magnetic field, that are respon-
sible for destabilizing resonant Langmuir waves. Our 1D
model corresponds to wave motions along the geomag-
netic field.

Nominal values of the plasma parameters used in the
Zakharov equation simulations are presented in Table I.
The parameters relating to the ion-acoustic dispersion
(cs and 7;,) are based on an oxygen plasma with the
electron temperature T, several times the ion tempera-
ture T; (the ion thermal correction to the sound speed
has not been included). The only parameter in Table I
that takes on different values in the numerical simula-
tions of Sec. III is the Langmuir damping v(k # kp).
Specifically, the numerical coefficient C was varied over
a range bracketing the nominal value C = 10 estimated
from measured auroral electron distributions. In the two
simulation runs discussed in Sec. III, we use the respec-
tive values C = 12.5 and C = 6.25.

Because the numerical simulations described in this
paper are restricted to one dimension, magnetic correc-
tions to the Langmuir dispersion relation do not enter.
As discussed in Refs. [6,8], auroral Langmuir turbulence
is observed at altitudes where the electron cyclotron fre-
quency {2, is comparable to w., resulting in significant
dispersive corrections for waves oblique to the magnetic
field. These dispersive corrections have the effect of con-
fining Langmuir waves to a narrow cone about the di-
rection of the magnetic field (i.e., a quasi-1D spectrum).
Full 2D simulations with a single pump mode, however,

TABLE I. Nominal plasma parameters.

ks v (ks) v(k # ks) Cs
0.04X;' -10"%w. C(kXe)we 5.8 x 10730,

Yia (k)
0.2kc,
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are not treated in this paper, but are deferred for future
study.

C. Numerical simulation methodology

The Zakharov-equation simulation code used in the
present study is a one-dimensional reduction of the mul-
tidimensional code described elsewhere [20,21]. The
Zakharov equations are solved on a periodic grid of 8192
points. In the k-space representation, the grid covers the
domain —0.16 < kA. < 0.16 = kyaxAe. Thus, the beam-
unstable mode kp (from Table I) is at kmax/4. This choice
ensures that the ion-acoustic decay mode (at ~ 2kp) is
immune to corruption by aliasing.

The grid spacing in k space is Ak = 3.9 x 107°) .
This corresponds to a frequency spacing Aw = vyAk =
4.7 x 1078w, when evaluated at k = k;. Here, vg is the
Langmuir group velocity vy = dw/dk =~ 3kA2w.. This
frequency spacing Aw is small compared to all relevant
linear frequencies in the equations (e.g., v, 7Via, etc.),
indicating that a sufficiently fine k-space grid has been
chosen. (Equivalently, the length of the simulation box
in physical space L = w/Ak is sufficiently large.) This
claim is validated in the numerical simulations of Sec. III
where ~ 102 daughter modes are excited.

Initial conditions are specified by imposing a uniform,
randomly phased distribution of Langmuir waves in k
space (i.e., white noise). No initial noise is present in
the density perturbations én. However, density waves
are rapidly driven by the beating of the Langmuir waves.
There is no spontaneous emission term in Eq. (1a) to
maintain the initial noise level; thus, the Langmuir waves
will decay at a rate given by (k) except for those wave
numbers which are fed by the decay of the beam-driven
mode.

III. RESULTS OF ZAKHAROV-EQUATION
SIMULATIONS

A. Time histories and instantaneous spectra

The Zakharov equations were numerically integrated
as described in the previous section using the parameter
values of Table I (with the parameter C allowed to vary).
In order to study the dynamics of the driven waves, we
look at the temporal evolution of the spatially averaged
quantity (|E|?), which is a global measure of the total
energy in Langmuir waves. As the damping coefficient
C is varied, (|E|?) is found to exhibit either periodic or
apparently chaotic behavior (following an initial, tran-
sient phase). Figure 1 shows time histories of {|E|?) for
two specific values of the damping coefficient—the first
(C = 12.5) exhibits a regular two cycle, whereas the sec-
ond (C = 6.25) shows no simple periodicity and appears
to be chaotic. In both cases, the observed dynamics of
{|E|?) in the many-mode Zakharov equations are found to
be in agreement with that of the corresponding dynam-
ics of the reduced three-mode system to be described in
Secs. IV and V below.
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FIG. 1. Time histories of the spatially averaged |E?| from
Zakharov-equation simulations using the parameters of Ta-
ble I except for the Langmuir damping. (a) v = 12.5(kA¢)3w.
and (b) v = 6.25(k)c)3we.

Instantaneous Langmuir-wave and density wave num-
ber spectra are plotted in Fig. 2 at a typical time (in a
sense that will be discussed shortly) for the parameters
leading to the periodic behavior of Fig. 1(a). The Lang-
muir spectrum is localized in two regions of k space as
seen when |E(k)|? is plotted on a logarithmic scale in
Fig. 2(a). The single unstable mode at kA, = 0.04 is
~ 6 orders of magnitude more intense than any of the
surrounding modes. These neighboring modes, which re-
sult from the pairwise beating of daughter modes not ex-
actly wave number matched to the pump (see Sec. III B),
are energetically insignificant with regards to the mode-
coupling dynamics. The second maximum in the Lang-
muir spectrum, which is in the vicinity of kA, = —0.037,
corresponds to the daughter Langmuir waves in the
backscatter decay of the beam mode. This component
of the Langmuir spectrum is not concentrated in a sin-
gle mode, but is distributed among a large number of
modes as can be more clearly seen in Fig. 2(b), which is
plotted on a linear scale, and which shows a magnified
view of the wave numbers in the vicinity of the nominal
backscattered Stokes wave number ks = —kp + k..

The density spectrum |dn(k)|? at the same instant of
time is plotted in Figs. 2(c) and 2(d). Because dn(z) is a
real quantity, its Fourier spectrum satisfies the symmetry
condition én(k) = —dn*(—k). We therefore can restrict
consideration to those modes with £ > 0. The dominant
feature in the logarithmically scaled density spectrum of
Fig. 2(c) is a peak in the vicinity of k;q = 2k — k., as
expected for the backscatter decay. There is also a com-
ponent of the spectrum in the vicinity of & = 0 that
results from the pairwise beating of backscattered Lang-
muir modes. This component is also energetically in-
significant and will not be included in the reduction to
a several-mode system in Sec. IV. The most intense den-
sity modes are plotted on a linear scale in Fig. 2(d). One
can immediately see that there is a close correspondence
between the shapes of the backscattered Langmuir spec-
trum in Fig. 2(b) and the density spectrum in Fig. 2(d)
near their respective maxima. Specifically, the two are
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related (up to an overall amplitude scaling factor) by a
reflection and translation in k space:

|Ex—ks | o< |6nk,,—k|?.

3)

Although the spectra of Fig. 2 are computed at a single,
arbitrary time during the Zakharov-equation simulation,
the spectral profiles at other times remain essentially un-
changed. Only the relative intensities of the individual
spectral components (i.e., the beam mode, the backscat-
tered Langmuir modes, and the daughter density modes)
are found to vary in time, with the relation described by
Eq. (3) maintained. It is in this sense that we made our
earlier claim that the spectra in Fig. 2 are typical. We
now use this observed invariance of the spectral shape to
construct a simple model for the time-dependent Lang-
muir and density spectra. It is this model that is the ba-
sis for our reduction of the multimode Zakharov-equation
system to an equivalent three-mode system.

B. Daughter-mode wave spectra:
Shape functions and correlations

Motivated by relation (3) and the observation of an ap-
proximately time-independent shape, we express spectral
amplitudes of the electric field and density perturbation
in the following form:

The respective arguments of the approximately time-
independent shape function £ in (4a) and (4b) correspond
to the arguments in (3), and are chosen so that ¢, is lo-
calized to the vicinity of p = 0. The second term on the
right side of (4a) is the pump electric field, which is con-
fined to a single mode at kp, and which is assumed to be
disjoint from the backscatter spectrum (i.e., £k, —ks = 0).

The decomposition of Ex(t) — Eo(t)ék,k, and dng(t)
into the product of k-independent amplitudes, time-
independent shape functions &, and phase factors exp[i®]
and exp[:¥], which depend on both k and t, is not unique.

In particular, we allow each of E, dn, and £ to be com-
plex, even though they all could be stipulated as real
quantities by absorbing the complex phases of E and én
entirely into ® and ¥. We choose this convention in
order to facilitate the reduction to an equivalent three-
wave system in Sec. IV. It is for this same reason that we
express dn in terms of £* instead of £.

Our numerical study shows that ® and ¥ develop neg-
ligibly small imaginary parts (hence, our reference to
exp[i®] and exp[i¥] as phase factors), provided that we
require ® and ¥ to be strictly real at one particular
time. For definiteness, the time corresponding to Fig. 2
will serve that purpose. Thus, only the magnitudes |E¢|
and |6n€*| can be inferred from Fig. 2. Full complex
phase information is of course contained in the numeri-
cal Zakharov-equation solutions. It turns out, however,
that sufficient phase information to allow a reduction to a

~ B i@(k—kst) 4 B0 (£)0k ks s 4a three-wave system is contained in cross-correlation func-
Ey(t) = E(t)&x-kse 0(6) (42) tions of £ and dn, as we now show. The following three
—_ U (kiamkrt) correlation functions reflect different assumptions about
dnk(t) ~ 5n(t)§k.-a—ke o (4b) the relative phase of E and dn:
J
Gmax 2
C(q) = Z Eks+Q1 6nkia+q26(q1 + qz2 — q) ’ (5&)
91,92~ " 9max
Gmax 2
Cmax(q) = ( Z |Eks+¢n ankiu+q26(q1 +4q2 — Q)') ’ (5b)
491,92~ —Qmax
Gmax
Cran(@) = D |Bkorai0nkitand(@ + a2 — @)% (5¢)

91,92 ="gmax
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Sums rather than integrals are used in order to emphasize the discrete nature of the wave number spectra in the
simulations. The limits on the sum —gmax < ¢ < @max for ¢ = 1,2 are chosen to ensure that only modes in the
vicinity of the nominal daughter-mode wave numbers contribute to the correlation functions.

The true correlation function C(q) assumes the phases of E; and dn, to be those actually obtained from the
numerical simulation. An upper bound on C(q) is given by Cmax(q), for which the phase of E plus the phase of dn
is assumed to be independent of k. Finally, C:an(g) employs a random-phase approximation and follows from (5a)
upon assuming that the cross terms in the expansion of the square of the sum completely cancel (i.e., destructively
interfere). To clarify the various assumptions about the phases, we substitute Egs. (4) into Egs. (5), where we note

that the pump term in (4a) does not contribute:

dmax 2
C(q) = |Eén Z a6 0 8(q1 + a2 — q)ei[®(at)+¥(—aa,t)] (62)
491,92 ="9dmax
9max 2
Crmax(q) = (lE5n| > l€n€ (@ +aa— q)l) ; (6b)
91,92="9max
e Gmax
Cran(9) = |BSn> )" [€,624,0(q1 + g2 — 9| (6¢)

91,92 =—"9max

The correlation functions C(q), Cmax(q), and Cran(q)
were numerically computed from the Zakharov solutions
(for the same value of ¢t as the spectra in Fig. 2), and
are plotted on a logarithmic scale in Fig. 3 as a solid
black curve, a solid gray curve, and a dashed black curve,
respectively. Since ks + ki, = ks, it follows that the
variable ¢ is the mismatch between the beat wave number
of the two daughter modes and the wave number of the
beam-driven pump mode. (This mismatch should not be
confused with the frequency mismatch to be discussed
later—the vanishing of one does not imply the vanishing
of the other.) At ¢ = 0, which implies ¢; = —q2 =
p, the true correlation function C is very nearly equal
to its upper bound Cihax, indicating that the product
Eyspdnk,,_, as a function of p exhibits maximal phase
correlation. To show this, we set ¢ = 0 in (6a) and (6b)
yielding
2

C(O)ZIE(t)E’;(t) qmz |p Pl EEOTT@ON - (7a)
CmaX(O):(E(t)g;"(t) i |£p|2> : (7b)

The near equality of C(0) and Ciax(0) would require
®(p,t) + ¥(p,t) to be approximately independent of p
if ® and ¥ were real phase angles. Although they are
not strictly real, we can nevertheless draw the weaker
conclusion

Edi E |§p|26z[‘1>(p,t)+\1'(p,t)] ~ 0, (8)

P

which will prove to be sufficient for our purposes.

The strong correlation between E and én applies only
to the case where the offset parameter g vanishes. By
contrast, for ¢ # 0 Fig. 3 shows that C(q) < Cian(q) in-
dicating that phases of the products Ey g4, 0nk,,+q, are,
on average, not merely uncorrelated when g # —q;, but
are, in fact, strongly anticorrelated. It is this anticor-
relation that accounts for the weakness of the Langmuir
response in the modes surrounding the driven beam mode

[Fig. 2(a)].

[
It is convenient to define £ so that it is normalized:

Z|§p|2 =1L (9)

P
From (6a), (8), (9), and Fig. 3, it follows that
C(g:t) ~ |E(t)on(1)|6(q), (10)
where the time dependence of C(g) has been made ex-
plicit.
IV. LUMPED-MODE REDUCTION

OF ZAKHAROV EQUATIONS
TO THREE-COUPLED-WAVE EQUATIONS

A. Determination of reduced equations
Substitution of Egs. (4) into (2) and separation of the

driven and backscattered Langmuir components in (2a)
yields

0 T T T T T T T T T
N / Cmax(@
I\As,’-‘ /\V\—\

= 2 + /\l \\'\ »

S h N ~

3] N M

5 S L Cran@

< Al N ran(d

2 YA /\

x 3 / ~ ‘T

‘a_) ~

5]

e

o

S C(a)

8 4t -
-5 + -
6 1 1 L 1 1 L 1 I 1

40 20 0 20 40

q (grid cell spacing)

FIG. 3. Correlation functions (defined in text) C(q) (solid
black curve), Cmax(g) (solid gray curve), and Cran(g) (dashed
black curve) on logarithmic scale vs wave number mismatch
q.
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[0, + iy(ks) — k1 Bo = BOn Y &, _ €y —p-nge (PRI T hiamp], (11a)
p
[0, + (k) — k?| Bk, e’®*59) = Eobn’ D bprri e TETROG (11b)
P
(07 + 2via (k) 8y + k210néy, 'Yk = —R2EoE* N 6, 1,65 e TPTRS TR, (11c)
P

The Fourier-transform symmetry relations én_j = (dng)* and (E*)_; = (E)* are used on the right sides of (11b)
and (11c), respectively. The summations in Egs. (11) can be explicitly evaluated resulting in the coupled system

[0, + iv(ks) — kZ]Eo(t) = E(t)3n(2), (12a)
i0, + iy(k) — K2 E(8)e’ B ks gy = Eo(£)5n (¢)&k—rse ¥k Fs0), 12b
S s
82 + 20 (k)8 + k2)6n(t)Ek:, e Y (Ria=kt) — _p2p () E*(2)¢r. _ e ®(kia—kit) 12¢
t ia—k kia—k

The (near) equality of (7a) and (7b) has been used, together with Eq. (8) and the identity ks + ki = k. Note that
each of Egs. (12b) and (12c) actually represents a multiplicity of equations (as many as there are values of p for which
&p does not vanish). )

We can, nevertheless, reduce (12b) and (12c) to two single equations describing the evolution of equivalent lumped
modes. Multiplying (12b) by &;_,_ exp[¢¥(k — ks,t)] and summing over k yields

> [6kmis P38, + i (k) — k? = B1E () = Eo(t)on (132)
k
where the term & results from passing the operator 8, to the right of exp[i®]. Similarly, multiplying (12c) by
€kin—k exp[i®(kiq — k, t)] yields
> ki k2P0 + 2910 (k)O, + K + i — U2 + 2iy;, B]bn(t) = Eo(t) E*. (13b)
k
The explicit dependencies of ® and ¥ have been left out of Egs. (13) for compactness.

We make the ansatz (to be defended shortly) that Egs. (13a) and (13b) are equivalent to single-mode equations of
the form

(10, + i7s — k3)E(t) = Eo(t)on (t), (14a)
and
(87 + 2%ia®s + E2,)0n(t) = —KZ,Eo(t) E* (2), (14b)

where ks, 7s, kiq, and 7;, are the effective wave number and damping rate of the equivalent lumped (Stokes) Langmuir
and ion-acoustic modes. Multiplying (14a) by |£(k — ks)|? expi[®(k — ks) + ¥(k — ks)] and summing over k yields

D [y PP E ke Bk 013, 4 i35 — B3)E(E) = Eo(t)bn (1) (15)
k

A sufficient condition for the equivalence of (13a) and  ever, during jche. nonlinear evolution of the. PDE sys-
(15) is a term-by-term correspondence which implies tem E(t) periodically approaches zero. It is at these
times that ® is not constrained to satisfy the vanish-

{®(k — ks,t) —i[y(k) — 3s] + (k* —k2)}E(t) =0, (16) ing of the factor inside the curly brackets in (16). One
possible way to avoid such secular growth—inconsistent

at those modes for which £{(k — kg) does not vanish. with observation—would be for the imaginary part of ®
It is clear that if (k) is not everywhere equal to ¥g, to be reset to zero at these times. Thus ® would never
then @ will indeed develop an imaginary part as dis- develop a sufficient imaginary part for | exp[i®]| to differ
cussed earlier. Equation (16) predicts ® is complex and  significantly from unity.

independent of ¢, which would result in the monotonic In order to determine the lumped-mode parameters ys

increase or decrease of |exp[i®(t)]| (depending on the and kg, we use Eq. (8), which implies

sign of the imaginary part of ®). Such a secular change ) . )
in magnitude is inconsistent with the observation that Z[q)(k —ks) + Uk — ks)]e'®HH g _p 2 =0.  (17a)
|€ exp[i®]| is approximately constant with time. How- k
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If we make the stronger assumption that

> (k- ks)eB Mg 4 |? =
k

(17b)
D Wk — ks)elP g i) =
k

hold independently, it immediately follows from (16)

that
s = Zv (18a)

lsk ks

and

(18b)

1/2
ks = (Zk2|§k_ks|2) .
k

Here we make the evaluation at the particular time (i.e.,
the time corresponding to Fig. 2) when exp(:[® + ¥]) =
is imposed for all k. Although conditions allowing one
to infer (17b) from (17a) do not necessarily follow from
the observed spectral correlations, this step nevertheless
leads to parameters of the reduced lumped-mode system
that accurately reproduce the dynamics of the multimode
Zakharov-equation system (see Sec. V A).

Following a similar procedure for the system of second-
order density equations (13b) yields an equation analo-
gous to (16), but for the time derivatives of ¥

— k2,)én(t) = 0.
(19)

[(9 — B2 + 2iv;0 ¥ + 2(Yia — Yia)O: + k2

We can replace 8;0n by @;,6n where @;, is independent
of k and is near the resonant ion-acoustic frequency at
k = k;o. The frequency @;, will, nevertheless, depend
on time; however, we will assume that this time depen-
dence is suﬁimently small to allow us to drop the term
proportional to ¥ in (19). We will also drop the U2 from
(19) on the assumption that variations in v;, and k;, are
small relative to their typical values (e.g., %i, and ki,
as defined below). This condition is indeed met for the
spectra under consideration here.

Upon making the above approximations we arrive at
the following expressions for the ion-acoustic lumped-
mode parameters:

Yia = (Z[l/'ﬁa(k)]lék,—a—klz) ) (20a)
P
and
1/2
ki = (’Yia Z[kz/’ﬁa]lﬁkia—klz) . (20b)

B. Transformation to a standard form

Equations (12a), (14a), and (14b) together constitute
a system of three coupled ordinary differential equations

in three complex variables. Because Eq. (14b) is second
order, there are a total of eight degrees of freedom in this
system. We will, however, later approximate (14b) by
a first-order system in order to make contact with the
previously studied system of WFO, which they showed
to have only four independent degrees of freedom (see
Sec. VI below). These equations simplify upon mak-

ing the change of variables (Eo, E, 377,) — (A1, Az, A3),

where
1/2 _
Eo = (El) Ale_lkgt, (21&)
ia
1/2 )
B= (kl) Age—F3t, (21b)
ia
on = iAge kit (21c)

This change of variables expresses the field variables in
terms of a (slowly varying) amplitude modulating the
characteristic linear wave frequency. Note that in the
case of the Langmuir waves this represents a second en-
velope approzimation since the field F in (1) is already an
envelope field modulating fast oscillations at the electron
plasma frequency we.

Substituting Eqgs. (21) into (12a), (14a), and (14b)
yields the system

(8 + ) A1(t) = Az Aze™t, (22a)

(8¢ + 75)Az(t) = — A1 Aje 0%, (22b)

Zkia

(LB? + [1 +zk ] O, +7m) As = _AlA;e—'iéwt-

(22¢)
The linear frequency mismatch is
Sw = kZ — B2 — Fia,

and would vanish for a resonant backscatter decay (i.e.,
ks = ks and k;, = kia). We have also employed the
simplified notation v, = ~y(ks).

C. Further reduction in degree of system

If the amplitude A3 varies sufficiently slowly relative to
the linear ion-acoustic frequency (i.e., |0: 43| < |kiaAs|)
and the ion-acoustic mode is weakly damped (|7io| <
|kial), then Eq. (22c) reduces to

(8t + Via) Az = — Ay Aje 01, (23)

We note that in this limit the approximations follow-
ing (19) become exact. Equations (22a), (22b), and (23)
are equivalent to the three-mode system studied in WFO
(prior to imposing the condition 45 = %;,). In compar-
ing the Zakharov-equation dynamics of Sec. III with the
dynamics of the coupled three-mode system, we will use
both (22c) and (23).
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V. COMPARISON OF ZAKHAROV-EQUATION
AND REDUCED LUMPED-MODE DYNAMICS

The equivalent-lumped-mode parameters of Egs. (18)
and (20) were numerically computed for the two
Zakharov-equation simulations of Fig. 1 using the k-space
spectra of Fig. 2 and corresponding ones (not shown) for
the chaotic case of Fig. 1(b). These parameter values are
listed in Table II. Note that in these units the pump
wave number is ky = 10.28. The wave numbers ks and
k;q are sufficiently different for the two cases to result
in a change of sign in the effective frequency mismatch
éw. These values of dw are small, but not negligible—
especially in the first case where dw is approximately 50%
of the ion-acoustic damping rate.

A. Dynamics with second-order dehsity response

Because the lumped-mode parameters of Table II are
determined from Zakharov-equation simulations, which
employ a second-order density response, Eq. (22c) will
more accurately describe the density response in the
truncated model than will Eq. (23). We therefore con-
sider solutions to the fourth-order complex system (22a)-
(22c¢) first.

Time histories of |Eo|? + |E|? = 2(|A41]? + |A42|?)/kia
are plotted in Fig. 4 for a time interval equal to that
in Fig. 1. This quantity equals the spatially averaged
squared Langmuir field in the three-mode system and
thus can be compared directly with (|E|?) in Fig. 1. In
these runs, the second-order equation (22c) for the den-
sity response is used. For the first (two-cycle) case, the
time histories in Figs. 1(a) and 4(a) are quite similar [fol-
lowing an initial transient in Fig. 4(a)] with nearly the
same periodicity and amplitude. The relative difference
in amplitude of the alternating high and low peaks is,
however, somewhat larger for the three-mode approxi-
mation. The chaotic dynamics in Figs. 1(b) and 4(b)
are also comparable although it is more difficult to make
a quantitative comparison for the relatively short time
intervals shown.

The level of agreement found between the lumped-
mode dynamics and the corresponding multimode
Zakharov-equation dynamics supports the truncation
procedure of the previous sections.

B. Dynamics with first-order density response

If Eq. (22c) is replaced by Eq. (23), the dynamics
are found to change, with poorer agreement between the
Zakharov-equation and lumped-mode solutions using the
(nominal) parameters of Table II. Figure 5 shows time

160— 3
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40
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[Eg2+E]2 (dimensionless units)

(dlmens:onless units)

FIG. 4. Time histories of E2 + E? for the three-mode sys-
tem with second-order density response of Egs. (17). (a) Pa-
rameters from first row of Table II. (b) Parameters from the
second row of Table II.

histories of |Eq|? + |E|? for the system of three complex
first-order equations using the parameters of the first row
of Table II except for the value dw/|vs|, which is set to
the value in the table (0.40), twice the value in the ta-
ble (0.80) and three times the value in the table (1.20),
and plotted in Figs. 5(a), 5(b), and 5(c), respectively. In
Fig. 5(a) [i-e., the same parameters as for Fig. 4(a)], the
two-cycle behavior is lost and the dynamics appears to
be chaotic, suggesting a qualitative change in the dynam-
ics. Doubling the frequency mismatch [Fig. 5(b)] recov-
ers the two-cycle behavior but the period is somewhat
shorter and the maximum amplitude is smaller than in
Fig. 4(a). A further 50% increase in éw [Fig. 5(c)] re-
sults in a simple limit cycle with still shorter period and
smaller maximum amplitude. Thus, we find that the
qualitative behavior of the system is maintained, despite
the reduction of the degree of the system, provided suit-
able adjustments in the parameters of the lumped-mode
system (e.g., dw) are made. The approximate validity of
the third-order system follows from the relatively weak
ion-acoustic damping ratio in the Zakharov-equation sim-
ulations (i.e., v, = 0.2kc, from Table I). We will restrict
consideration to the system of three complex first-order
equations in the following sections.

VI. ANALYTICAL DISCUSSION
OF THREE-WAVE MODEL

We have shown nﬁmerically that under certain con-
ditions the physical system described by the Zakharov
PDE'’s reduces to three simple wave equations with com-

TABLE II. Effective lumped-mode parameters.

Regime Y(k # ks) ks ¥s /sl kia Fia/ el 6w /||
Regular 12.5(kAe ) we 9.19 5.71 10.48 0.88 0.40
Chaotic 6.25(kAe ) we 9.32 2.98 19.60 0.89 ~0.15
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FIG. 5. Time histories of EZ + E? for the three-mode sys-
tem with first-order density response of Egs. (17a), (17b), and
(18). (a) Parameters from first row of Table II. (b) Same as
(a) except that dw/|vs| = 0.80. (c) Same as (a) except that
dw/|vs| = 1.20.

plex amplitudes. We now examine the analytical stability
of these equations.

A. Reduction to a real four-dimensional system

We begin by rewriting the equations in the same form
as used by WFO so that we can directly compare our
analysis to theirs. Upon making the change of variables,

—t

t=—,
o

A; = _'YbA'ia 1= 172a3’

dw = Avy, ¥ =—l2, Fia = —Vls,

in Egs. (22a), (22b), and (23), we recover the follow-
ing system, which is equivalent to WFO’s Egs. (2a) and
(2b):

d - . < o i

A= A+ Ay Aglem (242)
%fiz = —I‘zfiz - [x‘ilfi;]eﬂm, (24b)
d - . - . -

< As =—T343 - [A, A3]e™A. (24c)

At this point in their analysis, WFO express A, A,
and A3 in terms of moduli and phases, i.e.,

Ay = a;e'?, (25a)
Ay = azei[¢2+EA/2], (25b)
/ig = a3ei[¢3+{A/2], (25C)

¢ = ¢1— ¢2 — ¢, (25d)
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thereby reducing the equations to a fourth-order real sys-
tem

aal = a1 + asas cos ¢, (26a)
%az = —TI'2a; — ajascos @, (26b)
%da = —I'sas — ajaz cos ¢, (26¢)

where we have made the substitution £ — ¢ for the sake
of simplicity.

WFO show that in the special case I'y = I's = I, the
quantity aZ — a2 decreases exponentially. They therefore
set az = a3 and use the resulting real third-order system
without loss of information. Their entire analysis is lim-
ited to this case. However, in our circumstance a; and as
represent two different waves, Langmuir and ion acous-
tic, so there is no physical reason why we should assume
that the damping rates are equal. We thus retain the
more general fourth-order real system (26).

B. Stability analysis

The stability analysis undertaken in this section is
similar to that of WFO, but modified for the four-
dimensional system.

1. Fized point stability

We first look at the local stability of the steady state

solution, i.e., the fixed point. A stationary solution to
Egs. (26) is

VI2I's

a1,0 = — b0’ (27a)
as,o = CL/SIEO, (27b)
as,0 = c:)/sIEO ) (27¢)

$o = tan"! {r_ﬁ] . (27d)

There is also a trivial solution a; o = as0 = as,e = 0, but
this is always unstable since a; is linearly unstable.

We linearize Egs. (26) for perturbations about the 4D
fixed point solution a; = ajo0 +¢;; 7 = 0,1,2,3 (where
ao,0 = ¢o). The perturbations vary as €; = €;0e*. The
resulting eigenvalue equation is quartic in A\. We use Hur-
witz’s criterion [22] to determine the bounding surface of
the stable region of parameter space for which Re(A) <0
for all eigenvalues X. Figure 6 shows contours of the
marginal value of A plotted in I'; — I's space, where the
fixed point is locally stable if A exceeds this marginal
value.
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FIG. 6. Contours showing the lower bound on the value of
A for local fixed point stability in I'>-I's space. Values along
the diagonal (I'2 = I's) correspond to Fig. 1 of WFO.

2. Four-volume contraction

One necessary condition for stable orbits in a dissi-
pative system is that phase-space volumes (or the four-
dimensional equivalent) contract. The rate of divergence
of phase-space flow for our system can be shown to be
2 —T'y —TI's. Therefore four-volume in phase space varies
in time according to V(t) = V(0) exp[(2 — ', — I'3)¢], so
that for I'; + I's > 2, four-volumes shrink exponentially.
This is a generalization of WFQO’s similar constraint that
I" > 1. Here, I's + I'3 < 2 implies unbounded orbits be-
cause the damping rates of the daughter waves are too
low to saturate the instability of the pump wave.

3. Frequency mismatch

In WFQO'’s three-dimensional case, A = 0 leads to di-
vergent orbits in all cases. However, different damping
rates for the two daughter waves allow nonlinearly sta-
bilized dynamic solutions to exist for A = 0. This is
a physically interesting case because the fastest linear
growth rate in a three-wave parametric instability occurs
at A =0.

When A = 0, our real fourth-order set of equations
contracts into a third-order system different from that of
WFO. In order to demonstrate this, we sum Egs. (26a)—
(26¢) after multiplying by azas, ajas, and ajaz, respec-
tively, and set A = 0 in (26d), yielding

a(alazag) = alazag(l - F2 - F3)

—(a%a3 + a2a3 — a3a?) cos ¢, (28a)

d¢  a2a?+a?al —a2ad? .
— = sin ¢.
dt ajazasg

(28b)

Combining these equations leads to

d 1 d
d_f — (—alazaa E[alazag] + s+ Ty — 1]) tan ¢,
(28¢)
which reduces to
d
~——[ln(a1a2a3 sin ¢)] = —(Fg + Fz — 1) (28d)

dt

The quantity I's 4+ I'; — 1 is always positive in the
domain of bounded solutions; therefore, the product
ai1aza3sin ¢ decays to zero exponentially with time, re-
ducing the order of the system from four to three. The
contraction from four to three dimensions can be seen in
Fig. 7, which show the early-time numerical solutions of
Egs. (24) for the case I'; = 2.0,I'3 = 1.8, and A = 0. The
three amplitudes in Figs. 7(a)-7(c) will eventually settle
into a limit cycle. Figure 7(d) shows that the phase ¢
defined by (24c), which is given an initial value of /2,
becomes more and more localized to the vicinity of, al-
ternately, 0 and . Finally, the product a;azazsin¢ is
seen in Fig. 7(e) to decay exponentially, as predicted by
(28d), until numerical limits imposed by roundoff error
are exceeded—more than 20 e-foldings below the initial

ay
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In |aj a2 az sin(9)|
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FIG. 7. Numerical solutions to Egs. (24) for parameters
2 =20, s =1.8,and A =0. (a) a1 vs t, (b) az vs t, (c)
az vst, (d) ¢ vst, and (e) In[a1azazsin @] vs t.
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value. From Fig. 7 we see that when a; or ay vanishes,
¢ jumps between 0 and .

In the limit ¢ — oo, the value of cos¢ will alternate
between +1 and —1, with the sign change occurring si-
multaneously with the vanishing of one of the a;. Thus,
Eqgs. (26a)-(26c) become

U =o + azas, (29a)
d

aaz = —Fz(lz F ajas. (29b)
Eaa = —I'za3 F ajas. (29C)

Note that when, for example, a; vanishes, a; changes
sign while a2 and a3 remain unchanged.

Equations (29) are equivalent to a three-dimensional
system of equations, in which the real variables b; can be
either positive or negative,

d

ab1 = by + b2bs, (30a)
d

—by = — —

pric [2bz — bybs, (30b)
d

%bs = —F3b3 - blbz. (30C)

The amplitudes a; in (29) are related to the variables b;
through the relation a; = |b;|; 7 =1, 3.

VII. NUMERICAL ANALYSIS
OF THREE-WAVE MODEL

We use a Runge-Kutta integrating routine to numeri-
cally evolve the system of Egs. (26). We see repeated dips
into and out of chaos as limit cycles appear via tangent
bifurcations and then cascade back into chaos, usually by
way of a period doubling bifurcation.

We look at a range of values of the growth and damping
rates encompassing those used in the numerical evolution
of the complete Zakharov equations discussed above (see
Table II). Damping rates I'y and I's are sampled from

the range 1 < T'; 3 < 20 for both the case of A = 2 and
A = 0. The value A = 2 is chosen because it is the one
studied by WFO.

Since a full two-dimensional scan of I'; and I's is com-
putationally prohibitive, we focus on four cases: A =0,
with I'; = 2.5 and 9, and A = 2, with I'; = 2.5 and 9.
The parameter I'z is varied between 0 and 20 by steps of
0.1. The time series solution for a; is followed through
approximately 30 cycles for each value of I'; to determine
whether there is a stable limit cycle or chaos. Figure 8
shows examples of both chaos and a limit cycle, as evi-
denced by orbits in a; — a; — a3 space and by time series
of a; vs t.

Figure 9 shows a summary of the observed behavior.
The dark bands represent chaotic solutions, the white
bands represent limit cycles of finite order. Figure 9(a)
shows results for the case A = 0, with 'y = 2.5. Note the
dashed line at I's = 2.5. Here I'; = I'; and the system
reduces to WFQO’s three-dimensional system where all or-
bits with A = 0 diverge. Indeed, both the amplitude and
frequency of the stable limit cycle right below I's = 2.5
increase as I'y — I'3 until at I's = 2.5 they diverge. Just
above I's = 2.5, the stable limit cycle reappears with
decreasing amplitude and frequency until at I's = 3.6
a period doubling cascade occurs, followed by a transi-
tion into chaos. Figure 9(b) shows the case A = 0, with
'y = 9. This solution also diverges at I's = T2 = 9. In
the two A = 2 cases the behavior at I'y = I'3 corresponds
exactly to the behavior observed by WFO. Figure 9(c)
shows a dot-dashed line at 'y = I'3 = 2.5; here the sys-
tem is oscillatory with an envelope that grows rapidly.
The instability has not yet saturated. Interestingly, just
below and above this critical value of I'3 there is a stable
limit cycle that loses stability right at I's = 2.5. Fig-
ure 5(b) also has a dotted line at I's = 1; below this value
of I'3 the fixed point is stable. When A =2,T', =T'3 =9,
as shown in Fig. 9(d), there is just a simple two-cycle as
is observed by WFO.

The “observational” method of looking at time series
and orbits is a fairly accurate way of determining param-
eters for which the system is chaotic or stable, but it is
not conclusive. To rigorously analyze order vs chaos one
needs to determine Lyapunov numbers, which represent

Amplitude a;
o
D ey e~ e S —

FIG. 8. “Observational” evi-
dence of chaotic and limit-cycle
behavior: (a) shows a chaotic
orbit for the amplitudes a4 (t),
az(t), and a3(t) with the pa-
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the time series ai(t) for the
1 same parameters. (c) and (d)
show the orbit and time se-
ries for a nearby set of param-
eters (A = 2, Tz = 2.5, and
I's = 6.0) exhibiting a periodic
ten-cycle.
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FIG. 9. Qualitative description of chaos and order.

The black bands represent chaos and the white ones
periodic behavior. Four regimes are examined: (a)
T'; = 2.5, A = 0 (the dashed line represents diverging or-
bits); (b) ' = 9, A = 0 (the dashed line represents diverging
orbits); (c) I'2 = 2.5, A = 2 (below the dotted line the fixed
point is stable, again the dashed line represents diverging or-
bits); and (d) ' = 9,A = 2.

the rate at which nearby orbits exponentially diverge.
There are four Lyapunov numbers for our system, one
for each degree of freedom. We need only consider the
largest value. A largest Lyapunov number less than zero
would imply a stable fixed point, one equal to zero would
mean a stable limit cycle, and one greater than zero im-
plies chaos.
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FIG. 10. A detailed analysis using Lyapunov numbers (ar-
bitrary units) of the I'>= 2.5,A= 2 case. For I's < 1
(below the dotted line) the fixed point is stable. At
I's = 2.5, the orbits diverge as the system contracts onto
the three-dimensional system of WFO. Tangent bifurcations
are seen at I's = 4.8, 5.8, 6.2, and 6.4. As the calculation is
particularly sensitive to variation in two of the input parame-
ters to the Lyapunov code, they were allowed to vary and the
error bars represent the associated change in the Lyapunov
number. Specifically, the maximum displacement allowed be-
tween evolving orbits is varied from 10 to 15% of the range of
time series values, and the length of an evolving step is varied

between % and % of the period of oscillation in the time series.

We have employed a computer code [23] that estimates
the largest Lyapunov number for a given time series,
based on the method of time delay reconstruction. We
have used this analysis for the A = 2, with I'; = 2.5 case
seen in Fig. 9(c), extending the time series to approxi-
mately 300 cycles. Figure 10 shows the results. The re-
gions of order and chaos are seen clearly. For I'z < 1, the
fixed point is stable. At I'3 = 1, a limit cycle emerges
via a Hopf bifurcation. At I's = 2.5, as noted above,
the amplitude of the limit cycle diverges. At I'; = 4
there is a period doubling bifurcation to a two cycle, fol-
lowed by a frequency doubling cascade into chaos. Chaos
is clearly seen since the Lyapunov number increases by
two orders of magnitude. At I's = 4.8, 5.8, 6.2, and
6.4, there are tangent bifurcations to stable limit cycles.
For I'3 > 6.4 the limit cycle remains stable all the way
through I'; = 20.

VIII. CONCLUSIONS

The Zakharov equations and related PDE systems have
been used to model turbulence in plasmas and fluids in
which there are a large number of active degrees of free-
dom. In this paper, we have found a turbulence regime,
described by the 1D Zakharov equations, with many ac-
tive modes but with the dynamics of a system having only
a few degrees of freedom. This regime is characterized by
the decay of a single unstable pump Langmuir-wave mode
coupled to broadened spectra of daughter Langmuir and
ion-acoustic waves.

While it is tempting to simply implement a Galerkin
truncation to three modes (one pump and two daugh-
ters), the justification for such a truncation must
be based on the actual dynamics of the multimode
(Zakharov-equation) system. Furthermore, it is not a
priori clear which daughter modes to include in the trun-
cation. The obvious choice is the linearly most (para-
metrically) unstable pair of daughter modes given the
constraint of three-mode wave number matching. This
condition of maximum instability is satisfied for the case
of zero frequency mismatch, which corresponds to the
daughter Langmuir wave at k = ks and the daughter
ion-acoustic wave at k = k;,. However, as shown in
Sec. VIB 3, zero frequency mismatch (A = 0) is a special
case with one fewer degrees of freedom than the typical
case. In fact, as the Zakharov-equation solutions demon-
strate (cf. Table IT), the multimode dynamics do not gen-
erally yield exact frequency matching.

The appropriate three-mode truncation is found to de-
pend on both the shape and correlation properties of the
broadened daughter-wave spectra. When the effective
lumped-mode daughter waves—determined according to
the analysis of Sec. IV—are used in the reduced three-
mode system, the nonlinear dynamical evolution corre-
sponds well to the dynamics of the multimode system.
This quantitative agreement is lost when the linear ion-
acoustic response operator is reduced from second to first
order (the discarded degree of freedom corresponding to
an off-resonance density wave). Nevertheless, qualitative
agreement is maintained (through small adjustments in
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properties of the effective daughter modes). This reduc-
tion in order is useful analytically because it brings our
lumped-mode system into correspondence with a gener-
alization of the dynamical system studied by WFO.

The reduced system we study here differs from that of
WFO in that it allows the two daughter modes to have
unequal damping rates—thereby preventing a reduction
in order of the dynamical system (from four to three real
degrees of freedom), which WFO used to simplify their
analysis. The higher-order system we consider still re-
veals a wealth of nonlinear behaviors including transi-
tions to and from chaos. In addition, the nonequality of
the damping rates allows for bounded solutions when the
frequency mismatch vanishes.

The physical parameters (e.g., driving and damping
rates) used in this study were chosen to approximate
those measured in the Earth’s auroral ionosphere dur-
ing periods of Langmuir-wave excitation. We neverthe-
less urge caution in the direct application of the dynam-
ical behavior discussed here to observed Langmuir-wave
turbulence. The relaxation of idealizations employed in
this study may have important consequences in terms
of the dynamics of the turbulence—most significantly,
the one dimensionality (and consequent neglect of mag-
netic effects), and the restriction to a single driven mode
(or, equivalently, infinite coherence length of the pump).
Both of these effects will be considered in future investi-
gations.
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FIG. 6. Contours showing the lower bound on the value of
A for local fixed point stability in I';-I'3 space. Values along
the diagonal (I'; = I's) correspond to Fig. 1 of WFO.



